

[This artic le is meant to be viewed on a website]

This article is critical for developers who have intermediate to advanced experience
with Unity and are seeking advice on how to improve the efficiency, or
performance, of the lighting in their games.

Lighting, specifically lightmapping, has gone through a complete overhaul in Unity 5,
with an entirely new system and workflow. In the past, you could place a light in the
scene and bake the lighting as textures into static objects with the Beast
Lightmapping tool. In Unity 5, Beast has been replaced with Enlighten, which allows
for global illumination calculations that feature bouncing light and other subtle
lighting computations that result in a more realistic effect. However, there are
several new factors that must be considered in lighting scenes in order to maintain
performance.

QUICK TIP | Why is lightmapping important?

Without lightmapping, all lights need to be rendered in real time. This results
in several computations being done every frame, which results in your games
being slow. Lightmapping bakes some of this lighting information into
textures or files that make it so lighting doesn’t need to be calculated every
frame. This severely improves the performance of your game, especially
when targeting mobile platforms or less powerful hardware. Let’s see how to
use Unity’s new lighting system to create a scene with efficient lighting.

For this example, we will have a scene that is set up with some primitive Unity
objects in a small room. There is currently no lighting in this scene, but everything is
lit with some ambient lighting.

	
A small scene of primit ive objects with only ambient l ighting

Bring up the Lighting window by navigating to Window -> Lighting. You should then
see the Lighting panel in your workspace.

QUICK TIP | Precomputed vs. Baked GI
What is the difference between Precomputed Realtime GI and Baked GI?
Precomputed Realtime GI is not as efficient because it will update the
illumination if lights move or change during gameplay. Baked GI is more
efficient, storing lighting and shadows as textures. For greatest performance,
use only Baked GI and mark all objects that will not move as “static” in the
scene. However, if any lights will be moving or changing, using Precomputed
Realtime GI is sufficient.

In Unity, objects are lit in 3 ways: lights in the scene, reflection / light probes, and
emissive surfaces. Lights in the scene are most realistic, but are least efficient if
not baked. Reflection / light probes are good for approximating the lighting of
objects with minimal performance cost, but will not provide lighting inherently.
Emissive surfaces are the best way to simulate lighting with Unity’s new system,
providing lighting and shadows for static objects with almost no performance cost.

How do you use emissive surfaces? Unity 5 comes with a new standard shader
that is used for applying materials to nearly every realistic object. With this
standard shader, there is a property known as “Emission.”

	
Unity 5 standard shader with Emission property set to white with a value of 1

To enable emission, set the color and value of the emission property. The higher
the emission value, the more light the object will emit. After creating the material,
apply it to an object in the scene to turn that object into a light. Mark all objects in
the scene that won’t move as static, and then proceed to build the lighting.

	
The scene with an emissive cube on the wall acting as a l ight after bui lding l ighting

As you can see, the object on the wall is casting light onto all the objects in the
scene, and shadows are drawn as well. A combination of emissive surfaces and
ambient lighting is often enough to get scenes sufficiently lit with minimal
performance cost.

Lighting in Unity is certainly one of the largest contributors to slow games. By using
fewer lights and more emissive surfaces, you can greatly improve the efficiency of
any game you create.

For more information on how to improve your game’s efficiency, please read the
following articles:

- Light Troubleshooting and Performance
- Optimizing Graphics Performance
- General Performance Tips

